Textural Evidence for Liquid Immiscibility in Tholeiites

Anthony R. Philpotts
Department of Geology and Geophysics, and Institute of Materials Science, University of Connecticut, Storrs, Connecticut

Summary: The residual liquids of many tholeiitic basalts and andesites, on cooling, split into iron-rich and silica-rich fractions, which may quench to brown glassy globules and clear glass respectively. More commonly, however, cooling is sufficiently slow for the iron-rich liquid to crystallize to globular single crystals of pyroxene. Depending on the cooling rate, these crystallized globules range in shape from spheres to elongated globules bounded by crystal faces. The fine grain size of the mesostasis of most tholeiites is partly due to these small crystallized globules. The silica-rich fraction, on the other hand, is more commonly quenched to a glass, and when preserved as globules in the crystallized iron-rich fraction, it may be bounded by negative crystal faces of the surrounding pyroxene. Globules of the iron-rich liquid commonly nucleate on the surface of the plagioclase crystals where they can become trapped, later crystallizing to spherical pyroxene grains that mostly contain a minor opaque phase. In contrast, iron-rich globules that form next to pyroxene grains commonly become attached to these crystals, giving them lobate boundaries. The immiscible silica-rich liquid becomes trapped between these lobes and, with sufficiently slow cooling, results in finger-like quartzo-feldspathic inclusions extending in from the margins of the pyroxene grains. These textures can provide evidence of immiscibility in a wide range of volcanic and hypabyssal rocks, even when no glass is present.

Mineralogical Magazine; December 1978 v. 42; no. 324; p. 417-425; DOI: 10.1180/minmag.1978.042.324.02
© 1978, The Mineralogical Society
Mineralogical Society (www.minersoc.org)