Chemical Composition of Fluorapatite and Associated Minerals from Skarn Near Gatineau, Quebec

D. D. Hogarth
Department of Geology, University of Ottawa and Ottawa-Carleton Centre for Geoscience Studies, Ottawa, Canada, K1N 6N5

Abstract: Sixteen fluorapatite specimens from regional skarns in granulite terrain were associated with Al-zoned diopside ± scapolite ± actinolite ± calcite(+ rare phlogopite). Apatite was low in Ce (ave. 0.19% Ce2O3) and enriched in LREE relative to HREE (La/Yb = 31 to 74 in 4 specimens). Some specimens showed small negative Eu anomalies and some crystals were zoned in REE. SrO averaged 0.36%. The mineral contained some carbonate (ave. 0.5% CO2 in 5 specimens), appreciable silica (ave. 0.5%), and variable sulphate (0.1 to 1.2% SO3). Excess charge due to S6+ was largely compensated by Si4+. Chlorine was minor and F accounted for 75–98% of the F, Cl and OH ions. Apatite from marble lacking amphiboles and pyroxenes has a similar chemical composition, but apatite from later carbonatite and fenite contains more Ce and Sr. Apatite from Gatineau fenite, Gatineau carbonatite and world-wide siliceous igneous rock generally contains less S. Apatite from Gatineau skarns normally contains more Cl and less S than that from phosphorite. Magnesian marble was silicated to skarn by reaction with siliceous gneiss. Phosphorus, REE, and Sr were removed from nearby rocks and transported in aqueous, carbonated solutions containing minor amounts of F, Cl and S at granulite-facies conditions. Apatite and calcite precipitation took place in skarns and marble during the Grenville (Proterozoic) orogeny.

Keywords: skarn • fluorapatite • diopside • rare earth elements • strontium • chlorine • granulite metamorphism

Mineralogical Magazine; June 1988 v. 52; no. 366; p. 347-358; DOI: 10.1180/minmag.1988.052.366.06
© 1988, The Mineralogical Society
Mineralogical Society (