Martian meteorite chronology: Progress and challenges (A very brief history)

Chris Herd, co-convener
University of Alberta
herd@ualberta.ca
Challenges in martian meteorite geochronology

- Relatively rare
 - Currently >160 (including pairing groups; see https://imca.cc/mars/martian-meteorites-list.htm)
- Majority are fine-grained basalts
- All have been shocked (up to 10s GPa)
 - Effects include maskelynite, planar deformation features, melt veins, melt pockets

Photomicrographs showing maskelynite (diaplectic glass of feldspar composition) in ALH 77005.

Courtesy Erin Walton

Frontiers in Mars Sample Chronology 2021
Chassigny, France (Oct. 3, 1815)

Shergotty, India (Aug. 25, 1865)
- ALH77005, Y793605, EETA79001

Nakhla, Egypt (June 28, 1911)
- Lafayette, Governador Valadares

All oddballs (“SNCs”) until:
- McSween & Stolper (1980)
- Bogard & Johnson (1983)
Chen and Wasserburg (1986)

In Zagami, Shergotty, and EETA79001 (shergottites)

Despite ~200 Ma $^{238}\text{U}/^{206}\text{Pb}$ ages, concluded that timing = resetting by impact (forming maskelynite)
Jones (1986)

- Considered different scenarios based on Rb-Sr, Sm-Nd and U-Th-Pb systems
 - Mineral disequilibria/compositional zoning

- Concluded that shergottites are ~200 Ma, and nakhlites and chassignites ~1300 Ma

Frontiers in Mars Sample Chronology 2021
Borg et al. (1997)

Frontiers in Mars Sample Chronology 2021

Zagami, Shergotty, EETA79001, QUE 94201 (shergottites)
Revisiting U-Pb: Borg et al. (2005)

► Combined U-Pb, Rb-Sr, and Sm-Nd of Zagami
 – On same WR, mineral and leachate fractions
 – Rb-Sr: 166 ± 6 Ma
 – Sm-Nd: 166 ± 12 Ma
 – 238U-206Pb: 156 ± 6 Ma (cf. 230 Ma)
 – Presence of a high 207Pb/206Pb contaminant that disturbs the U-Pb system
 • Terrestrial
 • Martian
Revisiting U-Pb: Bouvier et al. (2005)

Fig. 1. 206Pb/238Pb vs. 204Pb/206Pb for whole-rocks and mineral separates from this study and from Chen and Wasserburg [6]. LA: Los Angeles; Zag: Zagami; Sh: Shergotty; EETA: EETA79001. Black symbols: this study; grey symbols: Chen and Wasserburg [6]. Bull’s-eye symbols: maskelynite; crosses: pyroxene.

Frontiers in Mars Sample Chronology 2021
U-Pb baddeleyite: Zhou et al. (2013)

Zagami (shergottite)
Table 3
Summary of geochronological studies of Zagami (ages in Ma).

<table>
<thead>
<tr>
<th>Ar-Ar</th>
<th>Rb-Sr</th>
<th>Sm-Nd</th>
<th>Lu-Hf</th>
<th>U-Th-Pb</th>
<th>Pb-Pb</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>209 ± 2(^a)</td>
<td></td>
<td></td>
<td></td>
<td>156 ± 6(^g)</td>
<td>4048 ± 17</td>
<td>Bogard and Park (2007)</td>
</tr>
<tr>
<td>223 ± 6(^d)</td>
<td>180 ± 4</td>
<td>180 ± 37</td>
<td></td>
<td></td>
<td></td>
<td>Shih et al. (1982)</td>
</tr>
<tr>
<td></td>
<td>186 ± 5(^e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nyquist et al. (1995)</td>
</tr>
<tr>
<td></td>
<td>183 ± 6(^f)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Borg et al. (2005)</td>
</tr>
<tr>
<td></td>
<td>166 ± 6</td>
<td>166 ± 12</td>
<td>185 ± 36</td>
<td></td>
<td></td>
<td>Bouvier et al. (2005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>155 ± 9</td>
<td></td>
<td></td>
<td></td>
<td>Chen and Wasserburg (1986)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>230 ± 5(^f)</td>
<td></td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>229 ± 8(^g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>183 ± 7(^h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>153 ± 81(^i)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) \(^{40}\)Ar-\(^{39}\)Ar age with no correction for cosmogenic \(^{36}\)Ar.
\(^b\) \(^{40}\)Ar-\(^{39}\)Ar age corrected for cosmogenic \(^{39}\)Ar.
\(^c\) For fine-grained portion of Zagami.
\(^d\) For coarse-grained portion of Zagami.
\(^e\) \(^{238}\)U-\(^{206}\)Pb age obtained from the purest mineral fractions.
\(^f\) \(^{238}\)U-\(^{206}\)Pb age.
\(^g\) \(^{235}\)Th-\(^{208}\)Pb age.
\(^h\) \(^{238}\)U-\(^{206}\)Pb age from baddeleyite, corrected for nonradiogenic Pb using the \(^{207}\)Pb correction method (see text).
\(^i\) \(^{238}\)U-\(^{206}\)Pb age from phosphates, corrected for nonradiogenic Pb using the \(^{207}\)Pb correction method (see text).
U-Pb baddeleyite: Moser et al. (2013)

The “Pb paradox” resolved…see also: Bellucci et al. (2016)
Martian Meteorites - summary

- **Shergottites (~82%)**: 165-700 Ma ages
- **Nakhlites & Chassignites (~14%)**: 1300 Ma ages
- **Augite-rich shergottites (~2%); 2400 Ma age**
- **NWA 7034 (~1%)**: 1500 Ma age, clasts >4300 Ma
- **ALH 84001 (~1%)**: 4100 Ma age

Frontiers in Mars Sample Chronology 2021
After Borg et al. (1997)

Frontiers in Mars Sample Chronology 2021

After Borg et al. (1997)
Constraints on the Timing of Planetary Differentiation

Rb-Sr whole rock mixing diagram

Martian mantle today and at ~4.5 Ga

Evolved component today

Evolved component at ~4.5 Ga

Courtesy Lars Borg
Shergottite radiogenic isotopes and REE

Depleted
La/Yb ~ 0.1

~ Range of Earth basalts!

“Enriched”
La/Yb ~ 1

This holds for nearly all shergottites!

Frontiers in Mars Sample Chronology 2021

After McCoy et al. (2011)
Shergottites: Implications

Old shergottites (~340 Ma)
- NWA1195
- NWA1460
- DaG
- Dho SaU Y98

Old shergottites (>474 Ma)
- NWA1460

Young shergottites (~175 Ma)
- EET B
- EET A
- LA NWA856
- Shergotty Zagami

Intermediate Source

Enriched Mantle (contains trapped liquid)

Magma ocean model. After Symes et al. (2008)
Invaluable information, BUT:

- Bias in sampling
- Gaps in chronology
- Not linked to specific units on Mars (having crater retention ages)

Udry et al. (2020)
Reference list

Frontiers in Mars Sample Chronology 2021